Course Description
現代代数学の基礎を学ぶ。群論,環論など。 毎週講義1時限,演習2時限。
線形代数学 II を既修のこと。さらに数学通論 I の既修が望ましい。
Introduction to modern algebra. Includes group theory and ring theory.
One period of lecture and two periods of recitation weekly. Prerequisite: Linear Algebra II. Recommended to be taken after Basic Concepts in Mathematics I.
Contents of Lectures 12 Lectures / 3 Videos
Apr 11 Lecture1 Groups
Apr 16 Recitation Ex. 2 (Volunteers)
Apr 21 Recitation Ex. 3 (Volunteers)
Apr 23 Lecture4 Cyclic Groups
Apr 25 Recitation Ex. 4 (Volunteers)
Apr 28 Lecture5 Permutation Groups
Apr 30 Recitation Ex. 5 (Volunteers)
May 02 Lecture6 Isomorphisms
May 07 Recitation Ex. 6 (Volunteers)
May 09 Lecture7 Cosets and Lagrange’s Theorem
May 12 Recitation Ex. 7 (Volunteers)
May 14 Lecture8 External Direct Products
May 19 Recitation Ex. 8 (Volunteers)
May 21 Lecture9 Normal Subgroups and Factor Groups
May 23 Recitation of Odd Numbered Problems of Ex. 9
May 26 Recitation of Even Numbered Problems of Ex. 9
May 28 Lecture10 Group Homomorphisms
May 30 Recitation of Odd Numbered Problems of Ex. 10
Jun 02 Recitation of Even Numbered Problems of Ex. 10
Jun 04 Lecture11 Fund. Thm of Finite Abelian Groups
Jun 06 Recitation of Odd Numbered Problems of Ex. 11
Jun 09 Recitation of Even Numbered Problems of Ex. 11
Jun 11 Lecture12 Sylow Theorems
Jun 13 Recitation Ex. 24 (Volunteers)
Jun 17 Review and Recitation
Instructor: SUZUKI‚ Hiroshi 鈴木寛( ICU Professor Emeritus 国際基督教大学 名誉教授) | Language of Instruction: J/E
Major: Mathematics 数学 | Course ID: MTH331 | Course Schedule: 2/M,(2/W,2/F) | Update: 2014.07.01 Category: Major Courses