Course Description
Course Description
Aims to provide advanced knowledge of modern mathematics. The topics are selected by the instructor among various fields of analysis, algebra, geometry, etc. Two periods of lecture weekly.
数学特論 I, II, III, IV:現代数学に関する高度の知識を学ぶ。講義の題目は解析,代数,幾何などの分野のうちから,そのつど担当教員によって選ばれる。毎週講義2時限。
Contents of Lectures 11Lectures / 11 Videos
Introduction
Dec 9 1. Review of Algebraic Extensions
Dec 9 1. Review of Algebraic Extensions
Dec 11 2. Finite Fields
Dec 11 2. Finite Fields
Dec 18 3. Geometric Constructions
Dec 18 3. Geometric Constructions
Jan 8 4. Normal and Separable Extensions
Jan 8 4. Normal and Separable Extensions
Jan 20 5. Automorphisms of Field Extensions
Jan 20 5. Automorphisms of Field Extensions
Jan 22 6. Fundamental Theorem of Galois Theory
Jan 22 6. Fundamental Theorem of Galois Theory
Jan 29 7. Cyclotomic Extensions
Jan 29 7. Cyclotomic Extensions
Feb 3 8.Constructible Regular n-gons, Solvability of Groups
Feb 3 8.Constructible Regular n-gons, Solvability of Groups
Feb 10 9.Solvability of Equations by Radicals I
Feb 10 9.Solvability of Equations by Radicals I
Feb 12 10.Solvability of Equations by Radicals II
Feb 12 10.Solvability of Equations by Radicals II
Feb 17 11.Solvability of Equations by Radicals III
Feb 17 11.Solvability of Equations by Radicals III
Instructor: SUZUKI‚ Hiroshi 鈴木寛( ICU Professor Emeritus 国際基督教大学 名誉教授) | Language of Instruction: J/E
Major: Mathematics 数学 | Course ID: MTH388 | Course Schedule: 3/M, 3/W | Update: 2014.03.05 Category: Major Courses