Topics in Mathematics II 数学特論 II

Course Description

Aims to provide advanced knowledge of modern mathematics. The topics are selected by the instructor among various fields of analysis, algebra, geometry, etc. Two periods of lecture weekly.

数学特論 I, II, III, IV:現代数学に関する高度の知識を学ぶ。講義の題目は解析,代数,幾何などの分野のうちから,そのつど担当教員によって選ばれる。毎週講義2時限。

Contents of Lectures 11Lectures / 11 Videos

Introduction

Dec 9  1. Review of Algebraic Extensions

Dec 11  2. Finite Fields

Dec 16   Recitation: Ex. 22 (Volunteers)

Dec 18  3. Geometric Constructions

Jan 6   Recitation: Ex. 23 (Volunteers)

Jan 8  4. Normal and Separable Extensions

Jan 15   Recitation: Suppl. Ex. for Ch. 19-23 (Volunteers)

Jan 20   5. Automorphisms of Field Extensions

Jan 22   6. Fundamental Theorem of Galois Theory

Jan 27   Recitation: Ex. 32 (Volunteers)

Jan 29   7. Cyclotomic Extensions

Feb 3 8.Constructible Regular n-gons, Solvability of Groups

Feb 5 Recitation: Ex. 33(Volunteers)

Feb 10   9.Solvability of Equations by Radicals I

Feb 12   10.Solvability of Equations by Radicals II

Feb 17   11.Solvability of Equations by Radicals III

Feb 19   Recitation for Review 1

Feb 24   Recitation for Review 2

Final

Review and Exams

Instructor: SUZUKI‚ Hiroshi 鈴木寛( ICU Professor Emeritus 国際基督教大学 名誉教授) | Language of Instruction: J/E

Major: Mathematics 数学 | Course ID: MTH388 | Course Schedule: 3/M, 3/W | Update: 2014.03.05 Category: Major Courses