Algebra I 代数学 I

Course Description

Introduction to modern algebra. Includes group theory and ring theory. One period of lecture and two periods of recitation weekly. Prerequisite: Linear Algebra II.

Recommended to be taken after BASIC CONCEPTS IN MATHEMATICS I.

現代代数学の基礎を学ぶ。群論,環論など。 毎週講義1時限,演習2時限。線形代数学 II を既修のこと。

さらに数学通論 I の既修が望ましい。

Contents of Lectures 29 Lectures / 13 Videos

Basic Information

April 9 Lecture 1. Groups

April 11 Lecture 2. Elementary Properties + Recitation

April 13 Recitation of Ex. 2 (Volunteers)

April 16 Lecture 3. Finite Groups; Subgroups

April 18 Recitation of Ex. 3 (Volunteers)

April 20 Lecture 4. Cyclic Groups

April 23 Recitation of Ex. 4 (Volunteers)

April 25 Recitation of Supplements 1-4

April 27 Lecture 5. Permutation Groups

May 2 Recitation of Ex. 5 (Volunteers)

May 4 Lecture 6. Isomorphisms

May 7 Recitation of Ex. 6 (Volunteers)

May 9 Lecture 7. Cosets and Lagrange’s Theorem

May 11 Recitation of Ex. 7 (Volunteers)

May 14 Lecture 8. External Direct Products

May 16 Recitation of Ex. 8 (Volunteers)

May 21 Recitation of Supplements 5-8

May 23 Lecture 9. Normal Subgroups and Factor Groups

May 25 Recitation of Ex. 9

May 28 Lecture 10. Group Homomorphisms

May 30 Recitation of Ex. 10

June 1 Lecture 11. Fund. Thm of Finite Abelian Groups

June 4 Recitation of Ex. 11 (Volunteers)

June 6 Recitation of Supplements 9-11

June 11 Lecture 12. Sylow Theorems

June 13 Recitation of Ex. 12

June 15 Review and Recitation

June 18 Review and Recitation

Old-Final

June 20 Final

Textbook

Joseph A. Gallian, Contemporary Abstract Algebra — 8th Edition –

International Version — Paperbacks

センゲージ・ラーニング

ISBN-13: 978-1133606758

Instructor: SUZUKI‚ Hiroshi 鈴木寛( ICU Professor Emeritus 国際基督教大学 名誉教授) | Language of Instruction: E

Major: Mathematics 数学 | Course ID: MTH331 | Course Schedule: 2/M, 2/W, 2/F | Update: 2018.04.23  Category: Major Courses